Positive solutions of a singular fractional boundary value problem with a fractional boundary condition
نویسندگان
چکیده
منابع مشابه
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملTriple Positive Solutions for Boundary Value Problem of a Nonlinear Fractional Differential Equation
متن کامل
Positive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive solution for boundary value problem of fractional dierential equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive solutions for a fractional boundary value problem
Fractional differential equations are a natural generalization of ordinary differential equations. In the last few decades many authors pointed out that differential equations of fractional order are suitable for the metallization of various physical phenomena and that they have numerous applications in viscoelasticity, electrochemistry, control and electromagnetic, and so forth, see 1–4 . This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2017
ISSN: 1232-9274
DOI: 10.7494/opmath.2017.37.3.421